VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD

B.E. (E.C.E. : CBCS) IV-Semester Main Examinations, January-2021 Digital System Design

- Time: 2 hours

Max. Marks: 60
Note: Answer any NINE questions from Part-A and any THREE from Part-B
Part-A ($9 \times 2=18$ Marks)

Q. No.	Stem of the question	M	L	CO	PO
1.	Mention any four important Boolean postulates	2	1	1	1
2.	Realize Ex-OR gate using NAND gates	2	1	1	2
3.	Differentiate between a multiplexer and Encoder operation	2	1	2	1
4.	Draw the circuit of Full Adder and write expressions for SUM and CARRY	2	1	2	1
5.	Write the properties of Pseudo random binary sequence	2	2	3	1
6.	Differentiate between a latch and flip flop	2	1	3	2
7.	Write about any two compiler directives.	2	2	4	1
8.	What is a test bench? Write its significance.	2	2	4	1
9.	Mention various timing controls used in HDLs	2	2	5	2
10.	What is logic synthesis?	2	2	5	1
11.	Minimize the 3 variable function using Boolean laws. $F(A, B, C)=\sum m(0,1,2,3,5,7)$	2	2	1	2
12.	Draw a schematic diagram of 4-bit subtractor using RCA and associated circuitry.	2	2	2	2
	Part-B ($3 \times 14=42 \mathrm{Marks}$)				
13. a)	Design a BCD to 7 segment decoder and realize the circuit using NAND gates only	7	4	1	2
b)	Explain Ex-OR and Ex-NOR simplification of K-maps with suitable example	7	4	1	2
14. a)	Design BCD adder circuit and explain its operation in detail.	7	3	2	3
b)	Design a two bit magnitude comparator and explain its operation in detail.	7	3	2	3
15. a)	Explain the steps to design a synchronous counter with the given type of flip flop.	6	2	3	4
b)	Design a 4 bit shift right register. Use JK flip flops. Draw the truth table and explain it.	8	4	3	4

16. a) Differentiate among various styles of modeling, namely Dataflow, Behavioral and gate level in detail
b) Write a Verilog module to implement a 4-bit binary adder using 1-bit adder. Use structural model. Write a test bench to verify your design
17. a) Design verilog module for a mod-13 counter with synchronous clear and preset. Verify your design with a suitable test bench. Use behavioral model
b) Write a HDL program for a sequence detector to detect 101011. Use mealy type modeling, no overlap of sequence is allowed.
18. a) Realize the following functions of 4 variables using 8:1 Mux.
(i) $\mathrm{F} 1 .=\Sigma \mathrm{m}(0,3,5,6,9,10,12,15)$
(ii) $\quad \mathrm{F} 2=\Sigma \mathrm{m}(0,1,2,3,11,12,14,15)$
b) Design an 8 bit priority encoder and explain its significance with truth table.
19. Answer any two of the following:
a) Design a mod10 ripple counter using JK flip flops.
b) Draw the switch level model of 2 bit EX-OR gate and write the Verilog code.
c) Differentiate between blocking and non blocking assignment with suitable example.

6	2	4	2
8	4	4	3
8	4	5	3
6	5	5	3
7	3	1	4
7	3	2	3
7	3	3	4
7	3	4	3
7	2	5	2

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome

S. No.	Criteria for questions	Percentage
1	Fundamental knowledge (Level-1 \& 2)	50
2	Knowledge on application and analysis (Level-3 \& 4)	45
3	*Critical thinking and ability to design (Level-5 \& 6) (*wherever applicable)	05

